Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants.
نویسندگان
چکیده
Bilateral cochlear implantation attempts to increase performance over a monaural prosthesis by harnessing the binaural processing of the auditory system. Although many bilaterally implanted human subjects discriminate interaural time differences (ITDs), a major cue for sound localization and signal detection in noise, their performance is typically poorer than that of normal-hearing listeners. We developed an animal model of bilateral cochlear implantation to study neural ITD sensitivity for trains of electric current pulses delivered via bilaterally implanted intracochlear electrodes. We found that a majority of single units in the inferior colliculus of acutely deafened, anesthetized cats are sensitive to ITD and that electric ITD tuning is as sharp as found for acoustic stimulation with broadband noise in normal-hearing animals. However, the sharpness and shape of ITD tuning often depended strongly on stimulus intensity; some neurons had dynamic ranges of ITD sensitivity as low as 1 dB. We also found that neural ITD sensitivity was best at pulse rates below 100 Hz and decreased with increasing pulse rate. This rate limitation parallels behavioral ITD discrimination in bilaterally implanted individuals. The sharp neural ITD sensitivity found with electric stimulation at the appropriate intensity is encouraging for the prospect of restoring the functional benefits of binaural hearing in bilaterally implanted human subjects and suggests that neural plasticity resulting from previous deafness and deprivation of binaural experience may play a role in the poor ITD discrimination with current bilateral implants.
منابع مشابه
Title: Sensitivity of Inferior Colliculus Neurons to Interaural Time Differences in the Envelope versus the Fine Structure with Bilateral Cochlear Implants
Bilateral cochlear implantation seeks to improve hearing by taking advantage of the binaural processing of the central auditory system. Cochlear implants typically encode sound in each spectral channel by amplitude modulating (AM) a fixed-rate pulse train, thus interaural time differences (ITD) are only delivered in the envelope. We investigated the ITD sensitivity of inferior colliculus (IC) n...
متن کاملSensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants.
Bilateral cochlear implantation seeks to improve hearing by taking advantage of the binaural processing of the central auditory system. Cochlear implants typically encode sound in each spectral channel by amplitude modulating (AM) a fixed-rate pulse train, thus interaural time differences (ITD) are only delivered in the envelope. We investigated the ITD sensitivity of inferior colliculus (IC) n...
متن کاملNeural coding of ITD with bilateral cochlear implants: Effects of auditory experience
Human bilateral cochlear implant users do poorly on tasks involving interaural time differences (ITD), a cue which provides important benefits to the normal hearing, especially in challenging acoustic environments. Yet the precision of neural ITD coding in acutely-deafened, bilaterallyimplanted cats is essentially normal (Smith and Delgutte, 2007). One explanation for this discrepancy is that n...
متن کاملNeural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness.
Human bilateral cochlear implant users do poorly on tasks involving interaural time differences (ITD), a cue that provides important benefits to the normal hearing, especially in challenging acoustic environments, yet the precision of neural ITD coding in acutely deafened, bilaterally implanted cats is essentially normal (Smith and Delgutte, 2007a). One explanation for this discrepancy is that ...
متن کاملThe neural coding of auditory space.
The barn owl's auditory system computes interaural differences in time and amplitude and derives from them the horizontal and vertical coordinates of the sound source, respectively. Within the external nucleus of its inferior colliculus are auditory neurones, called 'space-specific neurones', that have spatial receptive fields. To activate a space-specific neurone, a sound must originate from a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 25 شماره
صفحات -
تاریخ انتشار 2007